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Abstract—The turbulent flow of an isotopic mixture in a porous-walled pipe is considered in the presence of

suction through the wall. A simple model is formulated for the evaluation of aerodynamic effects on the

separation efficiency. The predictions of the model are found to compare very favourably with experiment. In

the limit of small suction velocities results obtained by other investigators for diffusion in a turbulent stream
are recovered.

NOMENCLATURE
suction rate, A = |w|/U;
ideal separation factor, equation (16);
effusion velocity at pore mouth;
pipe diameter ;
diffusion coefficient;
molecular number density flux;
Boltzmann’s constant;
characteristic length, equation (12);
molecular mass;
molecular number density;
richness in light component,
r=X/(1-X);
Reynolds number based on the average
velocity and pipe diameter;
separation efficiency ;
wall separation efficiency,
equation (17);
Schmidt number, S¢ = v/D;
Sherwood number, equation (14);
absolute temperature;
velocity vector of individual components;
center-of-mass velocity vector,
equation (7);
friction velocity;
average flow velocity in pipe;
center-of-mass velocity component in
the radial direction, taken constant;
molar fraction of lighter component;
enriched molar fraction of the lighter
component which would be obtained if the
molar fraction at the wall were X“;
molar fraction at the wall necessary to
obtain the enriched molar fraction X’
in an ideal separative process,
equation (A2);
distance from the wall in the radial
direction
dimensionless distance from the wall in
the radial direction, equation (3);
aerodynamic efficiency, equation (2).
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Greek symbols

¥, dimensionless phenomenological constant
equation (19);
d, dimensional thickness of diffusion—
convection layer;
é*,  dimensionless thickness of diffusion—
convection layer;
v, kinematic viscosity ;
0, fluid density;
o, porosity of the wall;
7,,  wall shear stress.
Subscripts
A, axial values, taken equal to the inlet
values;
h, heavy component ;
IR light component.
Superscripts
0, values at pipe wall;
" enriched values.

1. INTRODUCTION

IsoToPIC separation by gaseous diffusion is based on
the well-known fact thatin a gas mixture the fraction of
molecules hitting a surface element of the container per
unit time is inversely proportional to the square root of
the molecular mass. In the hypothesis of a Maxwellian
velocity distribution with zero mean this quantity can
be readily computed with the result (see e.g. [1])

Jj = in®@BkyTjnm)"/2. (1)
Here j denotes the number of molecules hitting the wall
of the container per unit area and unit time, n° is the
molecular (number) density in the vicinity of the wall,
T'is the absolute temperature, m is the molecular mass,
and k, is Boltzmann’s constant. Thus, if a small
opening (pore) is made in the wall, relatively more
molecules of the lighter than of the heavier species will
tend to effuse out of the container in a given time. In the
industrial application of this principle, the isotopic
mixture flows in a series of separative units each of
which consists essentially of a pipe, the wall of which is
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made of a porous material. The pipe wallis surrounded
by a low pressure chamber into which the lighter
molecules effuse at a faster rate than the heavier ones,
and from which therefore a gas richer in the lighter
species than that entering the pipe can be withdrawn.

In the steady state a concentration gradient in the
radial direction is necessarily present in the pipe
because a greater number of the lighter than of the
heavier molecules need be transported to the wall per
unit time to compensate for the different effusion rates.

As a consequence the ratio of

through the porous barrier will be different from the
one that would be found if the composition at the wall
were equal to the inlet composition. The effect of this
gradient can be quantitatively described in terms of the
aerodynamic efficiency Z defined by [2]

~ X -x R

C XX (2}
where X is the molar fraction of the lighter component,
X = n/(n,+n,), with the subscripts { and k indicating
the lighter and heavier species respectively. In equa-
tion (2) the prime denotes values at the pore exit and
the superscript 4 denotes values on the pipe axis. The
quantity X is the molar fraction at the pore exit which
would be obtained if the molar fraction at the wall, X ©,
were equal to X, [t is clear that, as a consequence of
the presence of the radial gradient, X < X!, from
which follows that X > X, and hence that Z < 1.+

In the present study we describe a simple model for
the calculation of the aerodynamic efficiency for
conditions of turbulent flow in a separative unit.

The model contains one undetermined parameter
the value of which is chosen by comparison with
experimental data. We show that, with the value of the
constant determined in this way, our model is in very
good agreement with experiment in the range 5
x 107 < Re < 10°, where Re is the Reynolds number
based on the pipe diameter.

We may observe that any mass flux through the
pores will perturb the Maxwellian velocity distri-
bution used to obtain equation {1} and will resultin a
collective, non-separative flow in addition to the
molecular effusion [3.4]. This effect can be reduced
using pores the cross section of which have linear
dimensions smaller than the mean free path of the gas
molecules. For this reason the early separation plants
were {orced to operate at low pressures, and therefore
at such small flow rates that the flow was faminar. This
situation prompted the analysis of the laminar version
of the problem under consideration which has been the
object of a number of studies [5-14]. The improve-
ment of manufacturing techniques for porous barriers
has made possible the use of higher pressures and
turbulent flow, for which much less information is

affucive Hnyec
of the effusive fluxes

+The aerodynamic efficiency is usually defined by an
equation similar to (2) in which the richness r = X/(1 ~ X)
appears in place of the molar fraction. Usually one has X « 1,
so that r = X approximately. In view of the very slight
composition variation produced by a single separative unit
we may consider X constant, and equal to the inlet value of
the molar {raction of the lighter component.
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available, at least in unclassified sources [ 2,157]. It will
be clear from the following that the effect of turbulence
is highly beneficial in that it reduces the thickness of
the diffusion boundary layer near the wall which, as
was observed by Caldirola [6] and other authors [12],
has adverse effects on the separative efficiency.

2. DESCRIPTION OF THE MODFL

Fully developed turbulent flow in a pipe is, at least at
the descriptive level, a quite well understood pheno-

id i in o bilant gtata F
menon [16]. The fluid is in a fully turbulent state of

motion over most of the cross section of the pipe. The
influence of the wall can be described in terms of the
dimensionless distance y* defined by

: ¥ = g, 3)
where y is the dimensional distance from the wall, v the
kinematic viscosity, and u, = {1,/p}"? the friction
velocity expressed in terms of the fluid density p and

. qchen t o -
wall shear stress 7.

LT N Py |
~ S utiupicd

aragioan

The ICEion 0 < ¥ *
by the laminar sublayer, and transition to the turbu-
lent core takes place over the intermediate range
S5<yt <70

In view of the very effective mixing properties of
turbulent flow the radial concentration gradient will
be much stronger in the boundary layer than farther
from the wall. In addition, the small radial velocity W
induced by the effusion process will be appreciable
only in the neighborhood of the wall, where it is of the
same order as the local average axial velocity or
greater. These considerations motivate our major
assumptions, namely that the concentration gradient
becomes negligible at a distance y* = d* from the
wall, and that the radial velocity i is constant in the
layer 0 < y* < 4% and zero elsewhere (see e.g. [17]).
These assumptions are modeled after those made by
Caldirola in his analysis of the laminar case [6] for
which however they appear to be somewhat less
justified than here.

It is clear that this schematization is rather crude. A
detailed analysis would undoubtedly show that the
parameter 07 (provided that it can be rigorously
defined at all) depends on the concentrations, the
Reynolds number, the effusion rate, and possibly other
quantities. It will be shown below, however, that the
dependence on these factors is not too critical, and that
our hypothesis can be a valid first approximation.

According to (3) the dimensional thickness of the
convection—diffusion layer is given by

d= O\+V;’H*, (4)
For Reynolds numbers smaller than 10¥ an expression
for u, can be obtained from the Blasius resistance
formula {16] which, when inserted into (4), results in
& = 5033%dRe 78, (3)
where d is the pipe diameter and Re = Ud/yv is the
Reynolds number based on the average velocity U. For
higher values of the Reynolds number Prandtl’s un-
tversal law of friction may be used in place of Blasius’;
equation (5) however is sufficient for the present
purposes. The parameter 37 is the only free constant of
our model, and it will be determined by comparison
with experimental data.
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If compressibility effects are neglected the diffusion
equation for the lighter molecular species in steady
conditions can be written as [1§]

V-[nu—DVn] =0, {6)

with a similar equation for n,. Here D is the diffusion
coefficient of the lighter molecules in the heavier ones
and @ is the center-of-mass velocity of the fluid
particles defined by

a=Xu,+{l —X)u, (7

where u, and u, are the velocity fields of the lighter and
of the heavier molecular species. A straightforward
estimate of the order of magnitude of the terms
involved shows that the derivatives in the axial
direction in equation (6) are small compared with
those in the radial one. With the neglect of the former
therefore we may integrate the equation directly with
the result
_ oy
AW =D e == — 0 (8a)
oy
where 1 is the radial component of the velocity &. The
constant of integration has been put equal to the
molecular effusive flux at the wall, —f, which is
negative with our choice of the y axis away from the
wall. A similar result holds for the heavier molecules,
namely
R
My =Dt = 0, (8b)
ay
With the assumption of uniform suction velocity i,
equations (8) can be readily integrated from the wall, y
=0, to y=4. Because of our hypothesis on the
absence of concentration gradients beyond y = § the
boundary conditions are n, = n’, n, =mn; at y =3,
where the superscript A indicates the values on the
pipe axis which, for small suction rates, can be taken as
the inlet values. In this way the number density /] at
the pipe wall can readily be computed with the result

n = (n'+j7/Ww)exp (—wd/D) —j /%, ©)

and similarly for ng. This is not a final result however
because the effusive flux j? is a function of n?; an
example of this relationship is given by equation (1) for
the ideal case. In general the connection between j?
and n may be assumed to be a linear function, except
when a strong non-separative collective flow is
present [2-4].

We therefore set

JP = oCn?, (10)

where the constant €, which is dimensionally a
velocity, is given by C, = +(8k,T/am,)!’? in the ideal
case (1), and by more complicated expressions when
the effects of retrodiffusion, finite pore length, etc. are
taken into account [2-4]. The quantity ¢ is the
porosity of the wall, defined as the total pore mouth
area per unit area.

With (10) equation (9) can be solved for nf with the
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result

— /D
o = exp(—%o/D) n', (11a)

1 —ag[exp(— wa/Dy—1]

A corresponding expression holds for r,
exp(—wd/D
p(~ /D) n. (11b)

Wy =
Ch —
1 —GT[EXp( —wd/D)— 1]
W
Notice that in these equations the suction velocity «vis

negative. Expressions similar to (10) were obtained by
Caldirola for the laminar case [6].

3. COMPARISON WITH EXPERIMENT

It is convenient to introduce a length { characteristic
of the radial transport process through the definition

dX: it
I=(X"'—X°)[a;‘ , (12)
Joly=0

where X denotes the molar fraction of the lighter
component. With the aid of equations (8) and (11) we
obtain the following explicit expression for this quan-

tity
D Sl v
I=— —1 3
]

e
where use has been made of the relation
g(RC,+m2C,) = — (il +n),

which is a consequence of (7), (10) and of the assumed
constancy of iT. An interesting feature of the relation
(13)is its independence from the effusion velocities C,,
C,. In terms of the Schmidt number Sc¢ = v/D and of
the suction rate 4 = |iv]/U this equation can be put in
the form

i
Sh™! = yia {AReSe)™ !
4
x [1 —exp(~5.036* ARe'3Sc)] (14)

in which the expression (5} for & has been used. Notice
that //d is the inverse of the Sherwood number for the
present problem. The quantity / cannot be measured
directly, but it can be related to the aerodynamic
efficiency Z defined in (2). It is shown in the Appendix
that the following relation holds:

B L —{wil/D
T[T+ Sia,—DIE/DI =X Y

VA (15)
where a, is the ideal separation factor expressed in
terms of the molecular masses of the heavy and light
isotopes by [1]

a, = (mym)t= (16)

S, is the wall separation efficiency defined by [2]

X -X° Xx*

Sy = e ,
! X0 X' —X*

(17)
where X * is the molar fraction at the wall necessary to
obtain the enriched molar fraction X’ in an ideal
separative process. By definition therefore S, is less
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than [, and it accounts for the non ideal features of the
separation. The connection of this quantity with the
separation efficiency of Present and De Bethune [4] is
discussed in the Appendix.

As shown by Mordchelles-Regnier [2] the aerody-
namic efficiency can be obtained from the measure-
ment of the concentration of the lighter isotope in the
enriched isotopic mixture. The value of [ can then be
deduced from (15).

The most significant prediction of our model is that
the quantity 4 * isindependent of Reynolds number or
suction rate. In order to test this prediction we shall
rely on the data of Mordchelles-Regnier [2]+ who
reduced his results in terms of Sh™! = l/d. In this
process we shall also be able to determine the value of
the quantity é*.

Table 1 shows a selection of data of Mordchelles-
Regnier’s with the measured values of Re, 4, Z and
Sh™1':in the last column the value of 6™ deduced from
(14)is shown. A certain scatter in the results is evident.
In order to determine whether this scatter was due to
experimental error or to a systematic dependence of 6*
on Re or 4 neglected in our model we tried a least-
square fit of the values of 6™ by an expression of the
form 6% = kRe“A", with k, a, b constants, From the
data of the table the following result was obtained

()‘+ =31 lRew0.022A0.067‘

Notice that the factor Re™ %922 goes from 0.83 to 0.78
for values of the Reynolds number ranging between 5
x 10* and 10°. Similarly the factor 4%%%7 ranges
between 0.86 and 1.08 for 0.1 x 107 € A <3 x 1077,
The extremely modest variation of these factors over
such wide ranges suggests that the scatter observed in
the last column of Table 1 is of purely experimental
origin, and lends a strong support to the validity of the
model presented in Section 2. The average value of 67
determined from the data is

3t =158 (18)

In Table 2 we present the data with Re < 5000. These
data were not considered before because they do not
correspond to fully developed turbulent flow in the
separation unit. Somewhat surprisingly, however, it
appears that the present model gives a satisfactory fit
of these data also. When the least square fit is carried
out on the data of both Tables | and 2 one finds *
= 27.2Re™ 0004 40973 4 result that lends itself to the
same interpretation given above for the previous one.

Finally, the remaining data of Mordchelles-Regnier
are shown in Table 3 with the corresponding &*
values. These data have not been considered above
because they appear affected by an obvious large
experimental error, as can be deduced by comparison
with the data of Table 1 corresponding to similar
values of Re and A4.

The least-square fit on all the data of Tables 1,2 and
3 gives the result §* = 57.6Re 0031 40124,

+These data have been taken on an argon isotopic mixture
with the lighter isotope, of atomic weight 36, present in the
concentration of 0.34%

Table 1. The data from [2] used to obtain the result (18)

Sh™!' x 10?

Re Ax10? z experimental 8"
S087 1.127 0.722 437 150
5178 1.684 0,735 407 148
5220 2.203 0.678 4.11 15.8
5277 2975 0.580 4.25 17.8
5380 1.846 0.717 4.12 159
5546 1,675 0.739 4.07 159
6124 2,174 0.648 3.85 173
7385 1.216 0.791 333 16.2
7415 1.216 0.798 2.87 138
7592 1.338 0.784 2.89 144
8050 1.714 0.692 3.20 17.9
8299 2421 0.622 2.75 16.6
8414 2.394 0.619 2,73 16.6
8420 1.723 0.696 315 184
8516 2710 0.592 2.63 16.5
8599 2239 0.683 243 14.5
8632 1.762 0.687 318 19.2
8668 3.373 0.519 2.49 16.8
8766 2.536 0.598 2.29 14.1
8847 1.370 0.754 2.88 16.8
9074 3.051 0.534 249 17.2
9387 2.365 0.613 262 17.6
9404 2274 0.620 2.69 18.1
10406 0.841 0.842 248 15.8
10520 0.892 0.822 2.26 14.5
10944 0.932 0.821 2.41 16.2
11055 0.795 0.853 222 14.8
11370 0.799 0.789 2.19 149
11452 1158 0.777 2.33 16.8
11582 1.546 0.708 217 16.3
11973 1.203 0.736 2.56 19.6
12036 1.804 0.661 2.23 18.0
12228 0.965 0.859 2.19 16.3
12404 2.305 0.613 2.02 17.5
13091 1.586 0.689 2.16 18.5
13360 0.695 0.869 1.90 14.8
16378 0.612 0.864 1.85 173
16 500 0.559 0.852 1.63 152
16509 0.800 0.856 1.56 148
16787 0.779 0.847 1.63 15.8
16906 1.105 0.777 1.65 16.7
17003 1.845 0.672 1.58 17.3
17379 1.213 0.745 1.66 17.5
17474 1.043 0.794 1.50 154
17482 1.540 0.696 1.55 169
18 364 0.626 0.886 1.32 135
18846 1.062 0.794 1.49 16.5
19379 0.439 0.933 i.11 1.6
19520 0.447 0.907 1.38 14.7
20174 0.438 0.952 1.44 15.8
26900 0.362 0.878 1.14 16.0
32551 0935 0.807 092 16.3
34768 0.252 0.935 0.94 164
48542 0.270 0.950 0.58 135
50142 0.201 0.952 0.65 155
50615 0.528 0.853 0.68 17.1
52170 0.353 0.927 0.48 119
52250 0911 0911 0.62 15.6
53107 0.266 0.957 0.63 159
56956 0.362 0.957 0.51 13.8
63178 0.467 0.908 0.36 10.7
65193 0472 0.880 0.37 119
100763 0.241 0.933 0.23 10.1
107621 0.101 0.969 0.38 17.5

4. DISCUSSION AND CONCLUSIONS

The assumptions that we have made in Section 2
amount to the hypothesis of the existence of cut off
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Table 2. The data from [2] corresponding to Re < 5000

Sh™'x10% !

Re Ax10° Z experimental a*
2716 3.7%6 0.559 7.03 16.7
2860 3914 0.551 6.53 16.3
2866 3.595 0.572 6.66 16.4
3281 4.179 0.582 6.56 20.7
3379 2.663 0.642 5.55 14.7
3390 3.164 0.592 5.95 16.7
3641 2.683 0.621 592 17.3

Table 3.7
Sh™ 1 x 10?

Re A x10? z experimental ot
31216 0.258 0.976 033 5.1
56882 0.208 0.961 0.29 76
95205 0.149 0.983 0.18 74

100892 0,102 0.981 0.71 313
101267 0.148 0.987 0.17 74
103278 0.197 0.752 0.16 7.1
104903 0.247 0.951 0.21 9.5
109 548 0.115 0.993 0.12 5.6
109 826 0.206 0.953 0.15 7.0

+The remaining data of [2] not considered in the present
study because of the probable presence of large experimental
error. Notice that according to [2] data corresponding to
values of Z near 1 can be affected by substantial imprecisions.

distances for the effect of the effusion velocity and of the
concentration gradient. The comparison with expe-
rimental data made in the preceding Section sub-
stantiates the validity of this assumption over a large
range of Reynolds numbers and suction rates. A
physical basis for this result can be sought in the fact
that the radial velocity is extremely small (of the order
of a thousandth of the mean axial velocity), so that any
appreciable amount of turbulence is sufficient to
render its effect negligible. This interpretation is sup-
ported by the fact that the constant 6 * is found to have
a value of the order of 16, which is not too far from the
outer boundary of the laminar sublayer. We may also
remark that we expect the laminar sublayer to become
somewhat thicker as an effect of the suction through
the porous wall, in view of the induced dampening of
the turbulent eruptions from the boundary layer [19].
Another significant feature of the present model is the
use of Blasius’ law. Suction is known to induce strong
modifications in the axial velocity in the laminar
sublayer but its effect on the outer portions of the
boundary layer is much smaller {20]. Since in the
present model we neglect velocities in the axial direc-
tion and we use explicitly only results relative to the
transition sublayer, it is expected that Blasius’ law
applies in its original form.

One question left open by our theory is that of the
dependence of the value of % from the axial con-
centration and the Schmidt number. Concerning the
first point it appears likely that such a dependence
exists as soon as the concentration of the lighter
component becomes of the order of 5% or greater,
because the radial gradients to be expected in these
situations will be much greater and less readily wiped
out by turbulent transport. Let us recall, however, that
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in very many practical situations of industrial interest
one deals with concentrations smaller than 1%, for
which our theory appears to be quite adequate.

A dependence on the Schmidt number Se = v/D is
also most likely present, because the quantity 47 is
determined by a competition of momentum and mass
transport. We expect 0% to increase with the mass
diffusion length, because then appreciable gradients
extend to a longer distance from the wall, and to
decrease with the momentum diffusion length, because
the greater this quantity the deeper into the buffer layer
turbulent fluctuations from the main stream penetrate.
This qualitative argument leads to postulate as a first
approximation, an inverse dependence of the cut off
distance with the square root of the Schmidt number,
8% =98¢~ 2. These speculations can be put on a
firmer basis observing that a power series expansion of
the exponential in equation (14) yields

4_11 = 5.03ySc™ Y2Re" 78, (19)
We can compare this expression with the Gilliland
correlation [21,22] quoted by Mordchelles-Regnier
[2] as describing accurately his data,
é = 43.488¢™ 244 Re™ 82, (20)
(This expression represents a fit of data relative to
vapor diffusion from liquid films in an air stream.)
Notice that, since 7/8 = 0.875, the exponent of the
Reynolds number is quite close to our result (5).
Furthermore, over the limited range of Schmidt num-
bers tested, the exponent 0.44 differs negligibly from
1/2, and is thus compatible with the above con-
siderations. These slight differences may safely be
imputed to experimental error. The comparison be-
tween the numerical constants in (19) and (20) is
somewhat complicated by the slight difference in the
exponents which leads to the relation

y = 8.645c%00Re0-043, 21)

For Re = 10000, which is approximately in the middle
of the range investigated by Gilliland, and Sc = 0.75,
(21) gives y = 12.8 to be compared with the value 13.1
obtained from (17) and (18). The agreement improves
if, instead of considering the average (18) of all the
entries of Table | we select only those corresponding to
A < 1073, which should limit the error caused by the
series expansion of our result (14). In this way we
obtain an average 6* = 14.7, to which corresponds y
= 12.7.

Introducing the additional Schmidt number de-
pendence just determined into equation (14) we can
put it in the following final form

Sh™*' = (AReSc)™'[1 —exp(—ySc/? ARe'®)],

where y is a numerical constant. Its value deduced from
(18) is

y=13.1,
while that obtained from the Gilliland formula is

y =127
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On the basis of the available experimental evidence it is
not possible to discriminate between these two values.
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APPENDIX

We give here a derivation of equation (15) of the text. The
standard relation between the effusive fluxes and the enriched
molar fraction at the other side of the porous wall X" is {1]

X p
=X gy
Making use of equations (10) and (7), and rearranging we
obtain
oCy = —(X'7X ),
which can be combined with equation {8a) after division by
(n,+n,) to give, at the wall,
84X 1
XOw—D—
Y ly=p
Notice that this procedure is legitimate because the pressure
in the boundary layer can be taken to be constant. The
enriched molar fraction X' can be related to the molar
fraction at the wall X° through the wall separation efficiency
S, defined by (17) in which X* is given by the well-known
expression [1]

= X%

(A1)

X
u*~X/(a*—l)'
The wall separation efficiency S, is related to the separation
efficiency S defined by Present and de Bethune [4] by

S, =8X*Xx°
which can be put into the form
s 5 S

Ul - D =X =8) T T+ (a - 1)(1-8)
since X’ « 1 in the situations of present concern. An explicit
expression for the quantity § has been obtained by Present
and de Bethune [4] and a simpler, approximate formula has
been given by Massignon [2].

Elimination of X* between (17) and {A2) results in
L+ 8) (1)
X =B X0 [T 4 S, — 1] X, (A3
1+Sa, —1)X° [+ Sifa, = DX, (A3)

where the small quantity §;{a, —1)X" has been neglected in
the denominator. With this relationship it is possible to
obtain the following expression for the aerodynamic ef-
ficiency (2)

X¥ =

(A2)

,  [+Sia, —1]X° - x+
T Sia, - DXA1=X)
where the same approximation made in (A3) has been used. It
is now possible to substitute (A3}into (A1) and to make use of
the definition of I, equation {12), to eliminate [dX/dy],_o. In
this way the following expression for X° is obtained

X9 == [148a, — DIey/D] ™' X

which, substituted into (A4), gives (15). Notice that this
derivation is independent of the particular model used in this
paper, and therefore of general validity.

, (A4)

EFFETS AERODYNAMIQUES DANS LA SEPARATION ISOTOPIQUE PAR DIFFUSION
GAZEUSE

Résumé —Cet article étudie Pécoulement turbulent d’un mélange d'isotopes dans une conduite 4 paroi

poreuse lorsqu'il y a aspiration d travers la paroi. Les auteurs proposent un modéle simple pour

I'évaluation des effets aérodynamiques sur le pouvoir de séparation. Les résultats obtenus a partir de ce

modéle sont en bon accord avec ceux de I'expérience. Dans le cas des petites vitesses d’aspiration, on

retrouve également les résultats obtenus par d’autres chercheurs pour la diffusion dans un écoulement
turbulent.



Aerodynamic effects in isotope separation

Zusammenfassung—Es wird die turbulente Stromung einer Isotopenmischung in einem pordsen Rohr unter

der Saugwirkung der Wand betrachtet. Fiir die Berechnung des Einflusses von aerodynamischen Effekten

auf die Trennleistung wird ein einfaches Modell angegeben. Die Voraussagen des Modells stimmen sehr gut

mit dem Experiment iiberein. Im Bereich kleiner Sauggeschwindigkeiten werden die Ergebnisse anderer
Forscher fiir Diffusion in einer turbulenten Strémung betrachtet.

ADPOIMHAMMWYECKUE 2®PEKTHI IMTPU PAZAEJEHWUN M30TOIMNOB
MOCPEACTBOM TI'A30BOM AHNPOY3IUU

AnHoTaima — PaccMmaTpuBaercst TypOyJICHTHOE TeYeHHE M30TOMHOW CMECH B TPYOKe ¢ MOPHUCThIMH
CTEHKAMH NPU HAJTM4YMH OTCOCA 4epe3 cTeHKY. [IpeasioxkeHa npocTas MOIesb A% OLEHKH BIMUAHUS
aspoauHaMUYecknx 3hPEeKTOB HA HHTEHCHBHOCTb pa3fieeH!s W30TONOB. HaitneHo, YTo MoaebHble
pacyeThl XOPOLIO COrNacyloTCa ¢ IKCMEPMMEHTOM. B mperenax HeGOJBIIMX CKOPOCTEH oTcoca
MOJIy4eHO MOATBEPKICHHE TaHHBIX OPYTHX MccnenoBaTenedt no auddy3un B TypOyIEHTHOM NOTOKE.
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