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Abstract-The turbulent flow of an isotopic mixture in a porous-walled pipe is considered in the presence of 
suction through the wall. A simple model is formulated for the evaluation of aerodynamic effects on the 
separation efficiency. The predictions of the model are found to compare very favourably with experiment. In 
the limit of small suction velocities results obtained by other investigators for diffusion in a turbulent stream 

are recovered. 

NOMENCLATURE 

suction rate, A = ICI/U; 

ideal separation factor, equation (16) ; 
effusion velocity at pore mouth; 
pipe diameter ; 
diffusion coefficient ; 
molecular number density flux; 
Boltzmann’s constant ; 
characteristic length, equation (12); 
molecular mass ; 
molecular number density ; 
richness in light component, 
Y = X/(1-X); 

Reynolds number based on the average 
velocity and pipe diameter ; 
separation efficiency; 
wall separation efficiency, 
equation (17) ; 
Schmidt number, SC = v/D; 

Sherwood number, equation (14); 
absolute temperature; 
velocity vector of individual components ; 
center-of-mass velocity vector, 
equation (7); 
friction velocity; 

average flow velocity in pipe; 
center-of-mass velocity component in 
the radial direction, taken constant ; 
molar fraction of lighter component ; 
enriched molar fraction of the lighter 
component which would be obtained if the 
molar fraction at the wall were XA ; 
molar fraction at the wall necessary to 
obtain the enriched molar fraction X 
in an ideal separative process, 
equation (A2); 
distance from the wall in the radial 
direction ; 
dimensionless distance from the wall in 
the radial direction, equation (3); 
aerodynamic efficiency, equation (2). 

Greek symbols 

Y, dimensionless phenomenological constant 
equation (19); 

6, dimensional thickness of diffusion- 
convection layer ; 

-+ 
b > dimensionless thickness of diffusion- 

convection layer ; 
“, kinematic viscosity ; 

P? fluid density; 

0, porosity of the wall; 

r,,> wall shear stress. 
Subscripts 

A, axial values, taken equal to the inlet 
values ; 

h, heavy component; 

1, light component. 
Superscripts 

0, values at pipe wall ; 
enriched values. 

1. INTRODUCTION 

Iso~oprc separation by gaseous diffusion is based on 
the well-known fact that in a gas mixture the fraction of 
molecules hitting a surface element of the container per 
unit time is inversely proportional to the square root of 
the molecular mass. In the hypothesis of a Maxwellian 
velocity distribution with zero mean this quantity can 
be readily computed with the result (see e.g. [l]) 

j = $n0(8k,T/nm)1’2. (1) 
Herej denotes the number of molecules hitting the wall 
of the’container per unit area and unit time, no is the 
molecular (number) density in the vicinity of the wall, 
Tis the absolute temperature, m is the molecular mass, 
and k,$ is Boltzmann’s constant. Thus, if a small 
opening (pore) is made in the wall, relatively more 
molecules of the lighter than of the heavier species will 
tend to effuse out of the container in a given time. In the 
industrial application of this principle, the isotopic 
mixture flows in a series of separative units each of 
which consists essentially of a pipe, the wall of which is 
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made ofa porous material. The pipe wall is surrounded 
by a low pressure chamber into which the lighter 
molecules effuse at a faster rate than the heavier ones, 
and from which therefore a gas richer in the lighter 
species than that entering the pipe can be withdrawn. 

In the steady state a concentration gradient in the 
radial direction is necessarily present in the pipe 
because a greater number of the lighter than of the 
heavier molecules need be transported to the wall per 
unit time to compensate for the different effusion rates. 

As a consequence the ratio of the effusive fluxes 
through the porous barrier will be different from the 
one that would be found if the composition at the wall 
were equal to the inlet composition. The effect of this 
gradient can be quantitatively described in terms of the 
aerodynamic efficiency Z defined by [2] 

where X is the molar fraction of the lighter component, 
X = rl,;(~,+~,,), with the subscripts I and h indicating 
the lighter and heavier species respectively. In equa- 
tion (2) the prime denotes values at the pore exit and 
the superscript A denotes values on the pipe axis. The 
quantity X’, is the molar fraction at the pore exit which 
would be obtained if the molar fraction at the wall. X0. 

were equal to X ‘. It is clear that, as a consequence of 
the presence of the radial gradient, X” < X ‘, from 
which follows that X’, > X’. and hence that Z < 1.-i- 

In the present study we describe a simple model for 
the calculation of the aerodynamic efficiency for 
conditions of turbulent flow in a separative unit. 

The mddel contains one undetermined parameter 
the value of which is chosen by comparison with 
experimental data. We show that, with the value of the 
constant deter-rnilied in this w-ay, our model is in very 
good agreement with experiment in the range S 

x 10” < Rr < 10', where Re is the Reynolds number 
based on the pipe diameter. 

We may observe that any mass flux through the 
pores will perturb the Maxwellian velocity distri- 

bution used to obtain equation (I ) and will result in a 

collective, noll-sep~lr~lti~/e flow in addition to the 
molecular effusion [3.4]. This effect can be reduced 
using pores the cross section of which have linear 
dimensions smaller than the mean free path of the gas 
molecules. For this reason the early separation plants 

were forced to operate at low pressures, and therefore 
at such small Row rates that the tlow was lam&r. This 
situation prompted the analysis of the laminar version 
of the problem under consideration which has been the 
object of a number of studies [S-14]. The improve- 
ment of manufacturing techniques for porous barriers 
has made possible the LM of higher pressures and 
turbule~lt Row, for which much less information is 

+The aerodynamic efficiency is usually delined by an 
equation similar to (21 in which the richness r = X;(l -X) 
appears in place of the molar fraction. Usually one has X CC 1. 
so that I’ = X approximately. In view of the very slight 
composition variation produced by a single separative unit 
we may consider X ’ constant, and equal to the inler value of 
the lncdar fraction of ihe lighter ~~~rnp(~n~nt, 

available, at least in unclassified sources [_‘, IS]. It will 
be clear from the following that the effect of turbulence 
is highly beneficial in that it reduces the thickness of 
the diffusion boundary layer near the wall which, as 

was observed by Caldirola [6] and other authors [I?], 
has adverse effects on the separative efficiency. 

2. DESCRIPTIOK OF THE MODEL 

Fully developed turbulent flow in a pipe is, at least at 
the descriptive level, a quite well understood pheno- 

menon [16]. The fluid is in :t fully turbuieilt state of 
motion over most of the cross section of the pipe. The 
influence of the wall can be described in terms of the 

dimensionless distance ,v+ defined by 

!‘+ = JU*/\‘, (3) 
where .t; is the dimensronal distance from the wall, Y the 
kinematic viscosity, and II* = (~,,.;p)‘:~ the friction 

velocity expressed in terms of the Ruid density $1 and 
wall shear stress T,,.. The region 0 s 1.’ 5 5 is occupied 
by the laminar sublayer, and transition to the turbu- 
lent core takes place over the intermediate range 
5sy+ 570. 

In view of the very effective mixing properties of 
turbulent flow the radial concentrati~~tl gradient will 
be much stronger in the boundary layer than farther 
from the wall. In addition, the small radial velocity i\ 

induced by the effusion process will be appreciable 
only in the neighborhood of the wall, where it is of the 
same order as the local average axial velocity or 
greater. These considerations motivate our major 
assumptions. namely that the concentration gradient 
becomes negligible at a distance r.’ = d+ from the 
wall, and that the radial velocity ii is constant in the 
layer 0 < _v+ $ (ii and zero elsewhere (see e.g. [ 171). 
These ~~ssumpti(~ns arc modeled after those made by 
Caldirola in his analysis of the laminar case [h] for 
which however they appear to be somewhat Iess 
justified than here. 

It is clear that this schematization is rather crude. A 
detailed analysis would undoubtedly show that the 
parameter &+ (provided that it can be rigorously 
defined at all) depends on the col~centr~~tions, the 
Reynolds number, the effusion rate, and possibly other 
quantities. It will be shown below, however, that the 
dependence on these factors is not too critical, and that 
our hypothesis can be a valid first approximation. 

According to (3) the dimensional thickness of the 
convection~diffusion layer is given by 

ci = &+I’/Li*. (4) 
For Reynolds numbers smaller than 1 OS an expression 
for U, can be obtained from the Blasius resistance 
formula [ 161 which, when inserted into (4). results in 

(i = 5.036+dRe-‘R, 15) 
where dl is the pipe diameter and Rc = Ud:v is the 
Reynolds number based on the average velocity C’. For 
higher values of the Reynolds number Prandtl’s un- 
iversal law of friction may be used in plact of Blasius’; 
equation (5) however is sufficient for the present 
purposes. The parameter 6+ is the only free constant of 
our model, and it will be determined by comparison 
with ex~rimen~~l data. 
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If compressibility effects are neglected the diffusion 

equation for the lighter molecular species in steady 
conditions can be written as [ 181 

V’[ll,u-DVH,] = 0, (6) 

with a similar equation for u,,. Were D is the diffusion 
coefficient of the lighter molecules in the heavier ones 
and 6 is the center-of-mass velocity of the fluid 

particles defined by 

ii = Xu,+(l -X)u,, (7) 

where ui and u,, are the velocity fields of the lighter and 
of the heavier molecuiar species. A straightforward 
estimate of the order of magnitude of the terms 
involved shows that the derivatives in the axial 
direction in equation (6) are small compared with 
those in the radial one. With the neglect of the former 
therefore we may integrate the equation directly with 
the result 

where it is the radial component of the velocity ii. The 
constant of integration has been put equal to the 
molecular effusive flux at the wall, -,{, which is 
negative with our choice of the ~1 axis away from the 
wall. A similar result holds for the heavier molecules, 
namely 

With the assumption of uniform suction velocity II, 
equations (8) can be readily integrated from the wall, J 
= 0, to r = 6. Because of our hypothesis on the 
absence of concentration gradients beyond y = 6 the 
boundary conditions are ni = nil, zrh = ?ri at )’ = ci, 
where the sllperscript 4 indicates the values on the 
pipe axis which, for small suction rates, can be taken as 
the inlet values. In this way the number density 14 at 
the pipe wall can readily be computed with the result 

11: = (f?t + jp/\F) exp ( - G?/D) - jp/G, (9) 

and similarly for J$‘. This is not a final result however 

because the effusive flux jp is a function of np; an 
example of this relationship is given by equation (1)for 
the ideal case. In general the connection between jp 
and 11; may be assumed to be a linear function, except 
when a strong non-separative collective Row is 
present [2 41. 
We therefore set 

jp = oC,$, (10) 

where the constant C,, which is dimensionally a 
velocity, is given by C, = $(8k,,T/lrm1)112 in the ideal 
case (I), and by more complicated expressions when 
the effects of retrodiffusion, finite pore length, etc. are 
taken into account [2-41. The quantity D is the 
porosity of the wall, defined as the total pore mouth 
area per unit area. 

With (IO) equation (9) can be solved for np with the 

result 

&= 
exp( - t+ci,/D) .I -n; , (lla) 

A corresponding expression holds for & 

ll; = 
exp ( - ii(i/D ) 

1 -as[exp(-\Gi/D)-1] 

4 ([lb) 

IT 
Notice that in these equations the suction velocity il.is 
negative. Expressions similar to (10) were obtained by 

Caldirola for the laminar case 161. 

3. COMPARISON WITH EXPERIMEN’I- 

It is convenient to introduce a length I characteristic 
of the radial transport process through the definition 

-I 
I=(X,‘-X0) zi,_ , 

1 1 
(12) 

‘I 0 

where X denotes the molar fraction of the lighter 
component. With the aid of equations (8) and (11) we 
obtain the following explicit expression for this quan- 

where use has been made of the relation 

fr(t{C,+@,) = -F(li:+i$), 

which is a consequence of (7), (10) and of the assumed 
constancy of IT. An interesting feature of the relation 

(13) is its independence from the effusion velocities C,, 
C,. In terms of the Schmidt number SC = 1,/D and of 
the suction rate it = IIFI/U this equation can be put in 

the form 
1 

Sk--’ = - = (AR&-’ 

x [l -exp( -5.03d+AReisSc)] (14) 

in which the expression (5) for d has been used. Notice 

that l/d is the inverse of the Sherwood number for the 
present problem. The quantity I cannot be measured 
directly, but it can be related to the aerodynamic 
efficiency Z defined in (2). It is shown in the Appendix 

that the following relation holds: 

1 - ltr~j/,:D 
-- 

’ = [I +S,(o,-l)IliVl/D](l -X,‘)’ 
(IS) 

where (I* is the ideal separation factor expressed in 
terms of the molecular masses of the heavy and light 

isotopes by [I] 

L1* = (l~z,;m,)“2. (16) 

S, is the wall separation efficiency defined by [?I 

X’-x0 x* 
S,=------P 

X0 X’-x*’ (17) 

where X* is the molar fraction at the wall necessary to 
obtain the enriched molar fraction X’ in an ideal 
separative process. By definition therefore Si is less 
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than I, and it accounts for the non ideal features of the 
separation. The connection of this quantity with the 
separation efficiency of Present and De Bethune [4] is 
discussed in the Appendix. 

Table I. The data from [23 used to obtain the result (18) 

SK’ x IO2 
Re .4x10-’ z experimental 6’ 

As shown by Mordchelles-Re~nier [2] the aerody- 
namic efficiency can be obtained from the measure- 
ment of the concentration of the lighter isotope in the 
enriched isotopic mixture. The value of I can then be 
deduced from (15). 

The most significant prediction of our model is that 

the quantity ci+ is inde~nd~nt of Reynolds number or 
suction rate. In order to test this prediction we shah 
rely on the data of Mordchelles-Regnier [2]+ who 
reduced his results in terms of ShK’ = l/d. In this 

process we shall also be able to determine the value of 
the quantity a+. 

Table 1 shows a selection of data of Mord~helles- 
Regnier’s with the measured values of Re, A, Z and 
Sit- ’ ; in the last column the value of d+ deduced from 

(14) is shown. A certain scatter in the results is evident. 
In order to determine whether this scatter was due to 
experimental error or to a systematic dependence of 6+ 
on Re or .4 neglected in our model we tried a least- 
square fit of the values of ci’ by an expression of the 
form ci” = kRr”A”, with k, a, b constants. From the 
data of the table the following result was obtained 

ii + = 31.1Re -0.022/,0.0h7, 

Notice that the factor Re-0.022 goes from 0.83 to 0.78 
for values of the Reynolds number ranging between 5 
x IO” and 10’. Similarly the factor ,4’,06’ ranges 
between 0.86 and 1.08 for 0.1 x lo-” < A 6 3 x 10m3. 

The extremely modest variation of these factors over 
such wide ranges suggests that the scatter observed in 
the last column of Table 1 is of purely experimental 
origin, and tends a strong support to the validity of the 
model presented in Section 2. The average value of ij+ 
determined from the data is 

(5 + = 15.8. (18) 

In Tlrble 2 we present the data with Re < 5000. These 
data were not considered before because they do not 
correspond to fully developed turbulent flow in the 
separation unit. Somewhat surprisingly, however, it 
appears that the present model gives a satisfactory fit 
of these data also. When the least square fit is carried 
out on the data of both Tables 1 and 2 one finds 6+ 
= 27.2Re-“.“04,40.0”, a result that lends itself to the 
same illterpretat~on given above for the previous one. 

Finally, the remaining data of MordcI~eIIes-Re~nier 
are shown in Table 3 with the corresponding ii+ 
values. These data have not been considered above 
because they appear affected by an obvious large 
experimental error, as can be deduced by comparison 
with the data of Table 1 corresponding to similar 
values of Rr and .4. 

The least-square fit on all the data of Tables 1,2 and 
3 gives the result ci+ = S7.6ReC0~05’Ao~‘Z”. 

SO87 I.127 0.722 4.37 15.0 
5178 1.684 0.735 4.07 14.8 
5220 2.203 0.678 4.1 I 15.8 
5211 2.975 0.580 4.25 17.8 
5380 1.846 0.717 4.12 15.9 
5546 1.675 0.739 4.07 15.9 
6124 2.174 0.648 3.85 17.3 
7385 I.216 0.79f 3.33 16.2 
7415 I.216 0.7Y8 2.87 13.8 
1592 1.338 0.784 2.X”) 14.4 
8050 1.714 0.692 3.20 17.9 
8299 2.42 I 0.622 2.75 16.6 
8414 2.394 0.619 2.13 16.6 
8420 1.723 0.696 3.15 18.4 
8516 2.710 0.592 2.63 16.5 
a599 2.239 0.683 2.43 14.5 
8632 1.762 0.687 3.18 19.2 
8668 3.373 0.519 2.4Y 16.8 
X766 2.536 0.598 2.2Y 14.1 
8847 1.370 0.753 2.88 16.8 
9074 3.05 1 0.534 2.49 17.2 
9387 2.365 0.613 2.62 17.6 
9404 2.274 0.620 2.69 18.1 

10406 0.841 0.842 2.48 15.8 
10 520 0.892 0.822 2.26 14.5 
10944 0.932 0.821 2.4 I 16.2 
I1 055 0.795 0.853 2.22 14.8 
1 I 370 0.799 0.789 2.19 14.9 
I I 452 1.158 0,777 2.33 16.8 
11582 1.546 0.708 2.17 16.3 
11973 1.203 0.736 2.56 19.6 
12036 I.804 0.661 2.23 18.0 
12228 0.965 0.859 7.19 16.3 
12404 2.30s 0.613 2.02 17.5 
13091 1.586 0.689 2.16 18.5 
13360 0.695 0.869 1.90 14.8 
16 378 0.612 0.864 1.85 17.3 
16500 0.559 0.892 1.63 15.2 
16509 0.800 0.856 I.56 14.8 
16787 0.779 0.847 I .63 15.8 
I6906 1.105 0.777 1.65 16.7 
II 003 1.845 0.672 I .5x 17.3 
17379 I.213 0.745 1.66 17.5 
17474 1.043 0.794 I.50 15.4 
17482 1.540 0.696 I.55 16.9 
18364 0.626 0.886 I .32 13.5 
18846 I.062 0.794 1.49 16.5 
19379 0.439 O.Y33 1.1 I II.6 

19520 0.441 0.907 1.38 14.7 

20 174 0.438 0.952 1.44 15.8 
26 900 0.362 0.878 1.14 16.0 
32551 0.935 0.807 0.92 16.3 
34 768 0.252 0.935 0.94 16.4 
48 542 0.270 0.950 0.58 13.5 
50 142 0.20 1 0.952 0.65 15.5 
50615 0.528 0.853 0.68 17.1 
52 170 0.353 0.927 0.48 11.9 
52 250 0.91 I 0.911 0.62 15.6 
53 107 0.266 0.957 0.63 15.9 
56956 0.362 0.957 0.51 13.8 
63 178 0.467 0.908 0.36 10.7 
69 193 0.472 0.880 0.37 11.9 

IO0 763 0.241 0.933 0.23 10.1 
107621 0.101 0.969 0.3x 17.5 

iThese data have been taken on an argon isotopic mixture 
with the lighter isotope, of atomic weight 36, present in the 
concentr~tti~n of 0.34”,,. 

4. DlSCIJSSiON AND CONCLUSIONS 

The assumptions that we have made in Section 2 
amount to the hypothesis of the existence of cut off 
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Table 2. The data from [2] corresponding to Re < 5000 
..- 

SK’x102 t 
R@ AxlO z experimental 6+ 

2716 3.796 0.559 7.03 16.7 

2860 3.914 0.551 6.53 16.3 

2866 3.595 0.572 6.66 16.4 

3281 4.179 0.582 6.56 20.7 

3379 2.663 0.642 5.55 14.7 

3390 3.164 0.592 5.95 16.7 

3641 2.683 0.62 1 5.92 17.3 

Table 3.1 

SK’ X 102 
Rt’ AxlO’ Z experimental b+ 

31 216 0.258 0.976 0.33 5.1 
56 xx2 0.208 0.961 0.29 7.6 
95 205 0.149 0.983 0.1% 7.4 

100 892 0.102 0.981 0.71 31.3 
101267 0.148 0.487 0.17 7.4 
103 ‘7X 0.197 0.752 0.16 7.1 
104903 0.247 0.95 1 0.21 9.5 
109 548 0.1 15 0.993 0.12 5.6 
109 826 0.206 0.953 0.15 7.0 

__- 

*The remaining data of [2] not considered in the present 
study because of the probable presence of large experimental 
error, Notice that according to [2] data corresponding to 
values of Z near 1 can be affected by substantial imprecisions. 

distances for the effect of the effusion velocity and of the 
concentration gradient. The comparison with expe- 
rimental data made in the preceding Section sub- 
stantiates the validity of this assumption over a large 
range of Reynolds numbers and suction rates. A 
physical basis for this result can be sought in the fact 
that the radial velocity is extremely small (of the order 
of a thousandth of the mean axial velocity), so that any 
appreciable amount of turbulence is sufficient to 
render its effect negligible. This interpretation is sup- 
ported by the fact that the constant d * is found to have 
a value of the order of 16, which is not too far from the 
outer boundary of the laminar sublayer. We may also 
remark that we expect the laminar sublayer to become 
somewhat thicker as an effect of the suction through 
the porous wall, in view of the induced dampening of 
the turbulent eruptions from the boundary layer [19]. 
Another significant feature of the present model is the 
use of Blasius’ law. Suction is known to induce strong 
modifications in the axial velocity in the laminar 
sublayer but its effect on the outer portions of the 
boundary layer is much smaller [20]. Since in the 
present model we neglect velocities in the axial direc- 
tion and we use explicitly only results relative to the 
transition sublayer, it is expected that Blasius’ law 
applies in its original form. 

One question left open by our theory is that of the 
dependence of the value of ci’ from the axial con- 
centration and the Schmidt number. Concerning the 
first point it appears likely that such a dependence 
exists as soon as the concentration of the lighter 
component becomes of the order of .50/, or greater, 
because the radial gradients to be expected in these 
situations will be much greater and less readiIy wiped 
out by turbulent transport. Let us recali, however, that 

in very many practical situations of industrial interest 
one deals with concentrations smaller than lx, for 
which our theory appears to be quite adequate. 

A dependence on the Schmidt number SC = v/D is 

also most likely present, because the quantity d+ is 
determined by a competition of momentum and mass 
transport. We expect 6+ to increase with the mass 
diffusion length, because then appreciable gradients 
extend to a longer distance from the wall, and to 
decrease with the momentum diffusion length, because 
the greater this quantity the deeper into the buffer layer 
turbulent fluctuations from the main stream penetrate. 
This qualitative argument leads to postulate as a first 
approximation, an inverse dependence of the cut off 

distance with the square root of the Schmidt number, 
6’ = ySc- Ii*. These speculations can be put on a 
firmer basis observing that a power series expansion of 
the exponential in equation (14) yields 

1 

d 
2: 5.03ySc- 1izRe-7’8. (19) 

We can compare this expression with the Gilliland 
correlation [21,22] quoted by ~ordchelles-Regnier 
[2] as describing accurately his data, 

1 _ = 43 48SC-0.44~e-0.8” 
d . 

(20) 

(This expression represents a fit of data relative to 
vapor diffusion from liquid films in an air stream.) 
Notice that, since 7/& = 0.875, the exponent of the 
Reynolds number is quite close to our result (5). 
Furthermore, over the limited range of Schmidt num- 
bers tested, the exponent 0.44 differs negligibly from 
l/2, and is thus compatible with the above con- 
siderations. These slight differences may safely be 
imputed to experimental error. The comparison be- 
tween the numerical constants in (19) and (20) is 
somewhat complicated by the slight difference in the 
exponents which leads to the relation 

y =: 8.64~~~~0~~~0.0~5. (21) 

For Re = IO 000, which is approximately in the middle 
of the range investigated by Gilliland, and SC = 0.75, 
(21) gives y = 12.8 to be compared with the value 13.1 
obtained from (17) and (18). The agreement improves 
if, instead of considering the average (18) of all the 
entries of Table 1 we select only those corresponding to 
A < 10e3, which should limit the error caused by the 
series expansion of our result (14). In this way we 
obtain an average 6+ = 14.7, to which corresponds y 
= 12.7. 

Introducing the additional Schmidt number de- 
pendence just determined into equation (14) we can 
put it in the following final form 

SK’ = (AReSc)-‘[l -exp(-ySc1’2ARe”s)], 

where y is a numerical constant. Its value deduced from 
(18) is 

y = 13.1, 
while that obtained from the Gilliland formula is 

y = 12.7. 
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On the basis of the available experimental evidence it is 20. Fulachier, Vi-rollet and Dekeyser, Resultats experimen- 
not possible to discriminate between these two values. taux concernant une couche limite turbulente avec 
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X’ 
x* = ~.__, 

a* - X’(a* - I ) 
WI 

The wall separation efficiency S, is related to the separation 
efticiency S defined by Present and de Bethune [4] by 

s, = SX’iXO. 

which can be nut into the form 
s s 

s, = ~+((I*-l)(l--x’)(l-ss)~ul+i(l*--l)(~--s)’ 

since X’ c< 1 in the situations of present concern. An explicit 
expression for the quantity S has been obtained by Present 
and de Bethune [4] and a simpler, approximate formula has 
been given by Massignon (21. 

Elimination of X* between (17) and (AZ) results in 

I +&(a*- I) 
X’ = ..-.. -- ..-1.1 ,X0 5 [1 +S,(u,-1)1X”, 

I + S,(tr* - I )X 
(A3) 

where the small quantity S,(u, - 1)X” has been neglected in 
the denominator. With this relationship it is possible to 
obtain the following expression for the aerodynamic ef- 
ficiency (2) 

[I +S,(U*-l)]XO-X~~ 
Z _ _--______.__- , 

S&r* - I )X”(I -X”) 
(A41 

where the same approximation made in (A3) has been used. It 
is now possible tosubstitute (A3)into(Al)and tomakeuseof 
the de~nition of 1. equation (12t, to eliminate [dX/dy],=,. In 
this way the following expression for X0 is obtained 

which, substituted into (A4), gives (15). Notice that this 
derivation is independent of the particular model used in this 
paper, and therefore of general validity. 

EFFETS AERODYNAMIQUES DANS LA SEPARATION ISOTOPIQUE PAR DIFFUSION 
GAZEUSE 

RbumP--Get article Ctudie I’tcoulement turbulent d’un mClange d’isotopes dans une conduitc ti paroi 
poreuse lorsqu’il y a aspiration $ travers la paroi. Les auteurs proposent un modile simple pour 
I’tvaluation des effets alrodynamiques sur le pouvoir de sbparation. Les rCsultats obtenus d partir de ce 
modZle sont en bon accord avec ceux de I’expCrience. Dans le cas des petites vitesses d’aspiration. on 
retrouve egalement les rCsultats ohtenus par d’autres chercheurs pour la diffusion dans un Ccoulement 

turbulent. 
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Zusammenfassung-Es wird die turbulente Striimung einer Isotopenmischung in einem porijsen Rohr unter 
der Saugwirkung der Wand betrachtet. Fiir die Berechnung des Einflusses von aerodynamischen Effekten 
auf die Trennleistung wird ein einfaches Model1 angegeben. Die Voraussagen des Modells stimmen sehr gut 
mit dem Experiment iiberein. Im Bereich kleiner Sauggeschwindigkeiten werden die Ergebnisse anderer 

Forscher fiir Diffusion in einer turbulenten StrGmung betrachtet. 

A3POflMHAMMYECKME 3WDEKTbI nPI4 PA3HEJlEHMM M30TOnOB 
nOCPE&ZTBOM I-A30BOfi ,4MWbY3MM 

AnHOTaUHR- PaccMaTpAsaeTcn Typ6yJleHTHOe Tevemie H30TOnHOii CMeCM B Tpy6Ke c nopCrCTbrMIl 
cTeHKaM5i npH Hamvim 0Tcoca Yepes cTeHKy. npennomeHa npocTaR Moaenb nnn 0qeHKa B~RHUII 

a3pOASiHaMHYeCKHX 3@$eKTOB Ha HHTeHCABHOCTb pa3LleJlcHRfl R30TOnOB. HatineHo. ‘IT0 MOLIenbHble 
paC’IeTb1 XOpOIIIO COrJIaCyIOTUl C 3KCnepHMeHTOM. B npeneJlaX He60nbUlJSX CKOpOCTefi OTCOCa 

IIOJIy'feHO lTOnTBep?iUleHHe naHHbIXnp)‘rAX HCCJIenOBaTeJlefi n0 lU&$y3Hk, B Typ6yneHTHOM nOTOKe. 


